Confidence Interval Information Table

	Parameter	Statistic	Standard Error	Critical Value Multiplier	Degrees of Freedom (df)
One Proportion	π	$\widehat{\pi}$	$\sqrt{rac{\widehat{\pi}(1-\widehat{\pi})}{n}}$	Z*	N/A
Difference between proportions	$\pi_1 - \pi_2$	$\widehat{\pi}_1 - \widehat{\pi}_2$	$\sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}$	Z^*	N/A
One mean	μ	$ar{x}$	σ/\sqrt{n} or s/\sqrt{n}	z* or t* depends on whether you know σ or have large n	If using t, $df=n-1$
Difference between means (unpooled*)	$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	t^*	$min(n_1-1,n_2-1)$
Difference between means (pooled*)	$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \text{ where}$ $s_p^2 = \frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}$	t^*	$n_1 + n_2 - 2$
Paired difference (mean difference)	μ_D	$ar{d}$	s_d/\sqrt{n}	t^*	n-1

^{*} To determine which method to use for pooled vs. unpooled, test the ratio of the variances (NOT standard deviations) like the following example: $\frac{s_1^2}{s_2^2} > 2$ \Rightarrow use unpooled, otherwise use pooled.