Confidence Interval Information Table | | Parameter | Statistic | Standard Error | Critical Value
Multiplier | Degrees of Freedom
(df) | |--|-----------------|-------------------------------------|---|--|----------------------------| | One Proportion | π | $\widehat{\pi}$ | $\sqrt{ rac{\widehat{\pi}(1-\widehat{\pi})}{n}}$ | Z* | N/A | | Difference between proportions | $\pi_1 - \pi_2$ | $\widehat{\pi}_1 - \widehat{\pi}_2$ | $\sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}$ | Z^* | N/A | | One mean | μ | $ar{x}$ | σ/\sqrt{n} or s/\sqrt{n} | z* or t*
depends on
whether you
know σ or have
large n | If using t, $df=n-1$ | | Difference between means (unpooled*) | $\mu_1 - \mu_2$ | $\bar{x}_1 - \bar{x}_2$ | $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ | t^* | $min(n_1-1,n_2-1)$ | | Difference between means (pooled*) | $\mu_1 - \mu_2$ | $\bar{x}_1 - \bar{x}_2$ | $\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \text{ where}$ $s_p^2 = \frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}$ | t^* | $n_1 + n_2 - 2$ | | Paired difference
(mean difference) | μ_D | $ar{d}$ | s_d/\sqrt{n} | t^* | n-1 | ^{*} To determine which method to use for pooled vs. unpooled, test the ratio of the variances (NOT standard deviations) like the following example: $\frac{s_1^2}{s_2^2} > 2$ \Rightarrow use unpooled, otherwise use pooled.